skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scheibner, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 31, 2026
  2. A system of tunnel-coupled quantum dots is considered in the presence of an applied electric field. Given the measurements of differences between ground state and excited state energy levels as the electric field is varied, we seek to recover the quantum Hamiltonians that describe this system. We formulate this as a parameterized inverse eigenvalue problem and develop algebraic and computational methods for solving for parameters to represent these Hamiltonians. The results demonstrate that this approach is highly precise even when there is error present within the measurements. This theory could aid in the design of high resolution tunable quantum sensors. 
    more » « less
  3. null (Ed.)